DIFFERENCES IN THE SOMATIC CHARACTERISTICS OF THE SUCCESSFUL AND LESS SUCCESSFUL GROUPS OF BASKETBALL PLAYERS OF CADET AGE

Alem Kukić ${ }^{1}$, Aleksa Stanković ${ }^{2}$, Nermin Salkanović ${ }^{3}$
${ }^{1}$ Primary school "Meša Selimović", Sarajevo, Bosnia and Herzegovina
${ }^{2}$ Faculty of Economics, University of Zenica, BiH
3Faculty of Philosophy, University of Zenica, Bosnia and Herzegovina

Abstract

The research is based on a sample of 132 cadet basketball players (69 successful cadets and 63 less successful cadets) from 12 participating clubs of the Sarajevo Canton cadet basketball league. The main goal of the research was to determine the structure of the somatic characteristics of young cadet basketball players using a cross-section. The total sample of basketball players divided into two groups of cadet basketball players, divided according to quality, statistically significantly differ in the analyzed somatic parameters. The group of better quality basketball players has better values in all analyzed somatic characteristics. The sample of variables in this research consisted of a set of 14 measuring instruments used to assess the somatic characteristics of young basketball players. After determining, i.e. adjusting the data values to characteristics that are suitable and valid for the use of designed analyzes and providing exact answers to the defined hypotheses, the following procedures were used for data processing and analysis in this paper: - multivariate analysis of variance (Manova) to determine the differences between groups of successful and less successful basketball players by somatic characteristics; - univariate F tests to determine significance for classifying respondents into groups based on the level of their basketball performance. The results of this research can be useful to coaches for better programming of the training process in working with young basketball players, as well as a good basis for scientists for future research on populations of young basketball players.

Key words: Multivariate analysis (Manova), cadets, basketball, somatic characteristics

INTRODUCTION

Achieving high performance results in sports depends on numerous factors. Performance in basketball competition depends on many factors, the most important of which are the player's somatic structure, motor, technical, tactical, physiological and psychological preparation.
A basketball coach must supervise and ensure the balanced development of players, i.e. his physical structure, improvement of visual and motor coordination, development of the necessary basic and specific motor skills taking into account the evolutionary processes associated with the pace of growth and maturation of the player. Anthropometric measurements, determination of their desirable profiles, as well as profiles of motor skills and their comparison with the profiles of top basketball players have become fundamental research areas for sports training specialists (Dežman, B.; Trninić, S.; Dizdar, D., 2001; Montgomery, P.G. ; Pyne, D.B.; Dorman, J.C., Janeira, S., Lorenzo, 2006). Somatic profiles of basketball players are widely recognized as a crucial factor in the selection process and as an important predictor of performance (Ostojic, S.M.; Mazic, S.; Dikic, N. (2006); Bayios, I.A.; Bergeles, N.K.; Apostolidis, N.G.; Noutsos, K.S. ; Koskolou,
D.J.; Fenn, A.J. (2010). Anthropometric characteristics, such as body fat, skin thickness, height, arm span, and body girth are determined as the main components of elite basketball players, so they are often considered as assumptions and indicators of level and game (Vaquera, A.; Santos, S.; Villa, J.G.; Morante, J.C.; García-Tormo, V. (2015).chez-Muñoz, C.; Zabala, M.; Williams, K., 2012; Horička, J.; 2016). Usually, a key component in the process of assigning specific player positions is body height (Dežman, B.; Trninić, S.; Dizdar, D, 2004), in which the tallest players (near the basket) are chosen as centers, and those with lower growth, (further from the basket). (Ostojic, S.M.; Mazic, S.; Dikic, N. (2006); Sallet, P.; Perrier, D.; Ferret, J.; Vitelli, V.; Baverel, G. (2005). Precisely for these reasons, this paper is focused on researching the structure of the somatic characteristics of young basketball players in Sarajevo Canton.

METHODS

Participants

The sample of respondents included a group of 132 (the more successful group counts 69, and the less successful 63 respondents) cadet basketball players from 12 clubs participating in the Sarajevo Canton
cadet basketball league. For more detailed analysis, clubs and basketball players are divided into subgroups depending on the placement in the league competition, evaluation of the individual quality of basketball players.

Variables

Competitive performance of basketball players
According to this criteria, basketball players are divided into two groups:

- Group 1 - more successful basketball players
- Group 2 - less successful basketball players
The competitive performance of basketball players is on a rating scale from 1 to 5 . Each basketball player was assigned a rating from 1 to 5 based on two criteria (Table 1)

1. Team ranking at the end of the competition: All teams (12 basketball clubs) that participated in the Sarajevo

Canton Cadet League for the 2019 season were grouped into 3 categories (1st-4th place; 5 th-8th place; 9 th-12th place).
2. Quality of basketball players within the team (as assessed by the coach). Each coach divided the basketball players of his team into three quality groups (above average - players who play the game, average - other basketball players who are members of the first lineup and reserves who contribute to the quality of the game; below average - basketball players who rarely or never enter the game).
Basketball players who were assigned grades 4 and 5 were classified in the group of more successful basketball players, and basketball players who were assigned grades 1,2 and 3 were classified in the group of less successful basketball players (Grgantov et al. 2013).

Table 1. Procedure for categorizing the individual value of basketball players

Placement of team in championship	the the	Member representation	Above average player	Average player	Below average player
$(1-4)$	5	5	4	3	
$(5-8)$	5	4	3	2	
$(9-12)$	5	3	2	1	

Data analysis

Differences between groups of successful and less successful basketball players in terms of somatic parameters were checked by tests for Multivariate Analysis of Variance (Manova) with a significance level of $p \leq 0.05$.
Before using the Multivariate Analysis of Variance, preliminary tests checked the assumptions of normality, linearity, univariate and multivariate atypical points, and multicollinearity.
The contributions of individual sets of analyzed variables to differentiate groups of successful and less successful basketball players by sets of analyzed variables were determined by the F test for univariate analysis of variance with a significance level of $p \leq 0.05$ and adequate Bonferroni adjustment considering the number of dependent variables.
The importance (magnitude) of the influence of the values of individual variables of somatic
characteristics in relation to the groups formed according to the success of basketball players were determined by the values of Partial Eta Squared.
Multiple comparisons of determined group mean values by sets of variables were analyzed with LSD Post Hoc tests.

RESULTS AND DISSCUSION

Two groups of basketball players (a more successful group of basketball players that counts 69 and a less successful group of basketball players that counts 63 cadets) were subjected to Multivariate Analysis of Variance in order to determine differences in the levels and structures of sets of variables of somatic characteristics. The mean values and standard deviations of the variables of somatic characteristics of basketball players classified into 2 groups according to the level of success are shown in table 2.

Table 2. Mean values and standard deviations of variables of somatic characteristics of basketball players of different quality groups

Variable	Group by quality	Mean	Std. Deviation	N
Height	More successful Less successful Total	$\begin{aligned} & 183.912 \\ & 179.827 \\ & 181.962 \end{aligned}$	$\begin{aligned} & 7.5226 \\ & 9.4129 \\ & 8.6892 \end{aligned}$	$\begin{array}{r} 69 \\ 63 \\ 132 \\ \hline \end{array}$
Body mass	More successful Less successful Total	73.158 69.011 71.179	12.1629 11.8489 12.1475	$\begin{array}{r} \hline 69 \\ 63 \\ 132 \\ \hline \end{array}$
Mass height index	More successful Less successful Total	21.509 21.248 21.384	$\begin{aligned} & \hline 2.5906 \\ & 2.7122 \\ & 2.6424 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 69 \\ 63 \\ 132 \\ \hline \end{array}$
Reachable height	More successful Less successful Total	$\begin{aligned} & 239.400 \\ & 234.525 \\ & 237.073 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.1103 \\ & 11.9288 \\ & 11.2418 \end{aligned}$	$\begin{array}{r} \hline 69 \\ 63 \\ 132 \\ \hline \end{array}$
Arm span	More successful Less successful Total	$\begin{aligned} & \hline 187.603 \\ & 182.819 \\ & 185.320 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.4312 \\ & 9.5529 \\ & 9.7527 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 69 \\ 63 \\ 132 \\ \hline \end{array}$
Hand span	More successful Less successful Total	$\begin{aligned} & \hline 22.629 \\ & 22.244 \\ & 22.445 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.4424 \\ & 1.6814 \\ & 1.5669 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 69 \\ 63 \\ 132 \\ \hline \end{array}$
Relat. non-lean mass	More successful Less successful Total	$\begin{aligned} & 64.577 \\ & 59.346 \\ & 62.080 \end{aligned}$	10.2636 9.1146 10.0438	$\begin{array}{r} \hline 69 \\ 63 \\ 132 \\ \hline \end{array}$
Relative lean mass	More successful Less successful Total	36.443 33.267 34.927	$\begin{aligned} & \hline 6.1993 \\ & 5.4611 \\ & 6.0499 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 69 \\ 63 \\ 132 \\ \hline \end{array}$
Total body water	More successful Less successful Total	$\begin{aligned} & 47.399 \\ & 43.608 \\ & 45.589 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7.4716 \\ & 6.6715 \\ & 7.3250 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 69 \\ 63 \\ 132 \\ \hline \end{gathered}$
Triceps curl	More successful Less successful Total	$\begin{aligned} & \hline 12.428 \\ & 13.306 \\ & 12.847 \end{aligned}$	$\begin{aligned} & 4.4830 \\ & 4.2754 \\ & 4.3906 \end{aligned}$	$\begin{gathered} \hline 69 \\ 63 \\ 132 \end{gathered}$

All mean values of variables of somatic characteristics have decreasing group indicators, i.e. members of a more successful group have better results, and members of a group of less successful basketball players have lower values. The successful groups are taller, have a higher body mass, a higher mass-height index, a higher reach height, a wider arm span, a wider hand span, a higher percentage of muscle and lean mass, the
total amount of body water and a lower triceps skinfold value.
Before moving on to the Multivariate Analysis of Variance, Box's test was used to check the assumption of violation of homogeneity of variance and covariance. Given that the value of Sig is greater than 0.001 and is .002, it can be concluded that this assumption is not violated (Table 3.)

Table 4. Box's test of homogeneity of variance and covariance matrices
Box's Test of Equality of Covariance Matrices ${ }^{\text {a }}$

Box's M	97.821
F	1.634
df1	55
df2	53645.793
Sig.	.002

Tests the null hypothesis that the observed covariance matrices of the dependent variables are equal across groups. a. Design: Intercept + KVALGR

Table 5. Multivariate significance tests of group differences of basketball players by somatic parameters

Effect		Value	F	Hypoth df	Error df	Sig.	Partial Eta Squared
Intercept	Pillai's Trace	1.000	$311647.558^{\text {b }}$	10.000	121.000	. 000	1.000
	Wilks' Lambda	. 000	$311647.558^{\text {b }}$	10.000	121.000	. 000	1.000
	Hotelling's Trace	25755.99	$311647.558^{\text {b }}$	10.000	121.000	. 000	1.000
	Roy's Largest Root	25755.99	$311647.558^{\text {b }}$	10.000	121.000	. 000	1.000
KVGRUPA	Pillai's Trace	. 173	2.530°	10.000	121.000	. 008	. 173
	Wilks' Lambda	. 827	$2.530^{\text {b }}$	10.000	121.000	. 008	. 173
	Hotelling's Trace	. 209	$2.530^{\text {b }}$	10.000	121.000	. 008	. 173
	Roy's Largest	. 209	$2.530^{\text {b }}$	10.000	121.000	. 008	. 173
	Root						

b. Exact statistic

Table 6. Levene's test of equality of variance of variables of somatic characteristics of groups of basketball players of different quality levels

	F	df_{1}	df_{2}	Sig.
Body height	1.492	1	130	.224
Body mass	.106	1		130
Mass height index	.437	1	.745	
Reachable height	1.077	1	130	.510
Arm span	.003	1	130	.301
Hand span	.197	1	130	.958
Relat. lean mass	.363	1	130	.658
Relative muscle mass	.450	1	130	.548
Total body water	.309	1	130	.504
Triceps curl	.004	1	130	.579

All multivariate tests (Pillai's Trace, Wilks' Lambda, Hotelling's Trace and Roy's Largest Root) confirm that groups of basketball players grouped according to quality level differ significantly by linear combination of dependently variable somatic characteristics (Table 5). The statistical significance of all
tests is at a high level and amounts to Sig. =.008. Such data from multivariate tests allow us to use univariate F tests to investigate the statistical taxonomic significance of all variables of somatic characteristics of cadet basketball players for classifying respondents into groups formed by quality level.

Previously, Levene's test was used to check the assumption of violation of equality of variance. Considering that no variable has a significant value of Levan's test, i.e. Sig<. 05 we can s that the variances are equal. (Table 6.)

The results of Univariate F tests for variables of somatic characteristics of cadet basketball players of different quality levels are shown in Table 7.

Table 7. Univariate F tests for variables of somatic characteristics of cadet basketball players of different quality levels

Source	Dependent Variable	Type III Sum Squer	$\begin{aligned} & \mathrm{d} \\ & \mathrm{f} \end{aligned}$	Mea n Squa re	F	Sig.	Partial Eta Square d
KVALGR	Body height	549.436	1	549.436	7.646	. 007	. 056
	Body mass	566.310	1	566.310	3.923	. 050	. 029
	BMI	2.245	1	2.245	. 320	. 573	. 002
	Reachable height	782.518	1	782.518	6.449	. 012	. 047
	Arm span	753.652	1	753.652	8.369	. 004	. 060
	Hand span	4.870	1	4.870	1.999	. 160	. 015
	Relat.nonmusc. mass	901.049	1	901.049	9.512	. 002	. 068
	Relative muscle mass	332.352	1	332.352	9.682	. 002	. 069
	Total body water	473.189	1	473.189	9.383	. 003	. 067
	Triceps curl	25.434	1	25.434	1.323	. 252	

The variables body height, body mass, reaching height, arm span, relative lean mass, relative muscle mass and total body water have a unique statistically significant taxonomic value (Sig<.05). The variables BMI, hand span and tricep fold do not contribute statistically significantly to the group differences in quality level of cadet basketball players.
Insight into the value of the Partial Eta Squared column allows us to analyze the importance (magnitude) of the influence of the group level of quality on the variables of somatic characteristics. Since Partial Eta Squared represents the proportion of variance in the dependent variable (somatic characteristics) explained by the independent variable (quality group), it is also possible to determine the order of importance of that influence.
In this case, the order of influence is as follows:

- relative muscle mass 6.9\%
- relative lean mass 6.8\%
- total body water 6.7\%
- hand span 6.0\%
- body height 5.8\%
- reach height 4.7%
- body mass 2.9\%

It can be concluded that the two groups of cadet basketball players formed by quality are statistically significantly different in the analyzed somatic parameters. The group of better quality basketball players has better values in all parameters. The order of influence of variables on classification into different quality groups is: relative muscle mass (6.9%), relative lean mass (6.8\%), total body water (6.7\%), arm span (6.0\%), body height (5.8%), reaching height (4.7%) and body mass (2.9\%).

CONCLUSION

The goal of this transversal research of confirmatory type is reflected in the effort to use an objective, scientifically and methodologically based approach to verify the existence of cadet basketball players in relation to the level of their success in the game and the analyzed somatic characteristics. This approach should offer information essential for the procedures of identifying, developing and selecting young talented basketball players for the basketball. Achieving this goal enables an approach in which
the planning and programming of the training process will emphasize the development of the abilities and skills most essential for success in the basketball game and which can be effectively influenced by adequate training.
The research is based on a sample of 132 cadet basketball players (a more successful group of basketball players -69 , and a less successful group of basketball players - 63 respondents) from 12 participating clubs of the cadet basketball league of Sarajevo Canton/Federation of Bosnia and Herzegovina with the aim of determining the structure of measures of somatic characteristics of young basketball players.
The above analyzes resulted in the following conclusions:

The total sample of basketball players divided into two groups of cadet basketball players, grouped according to quality, differ significantly in the analyzed somatic parameters. The group of better quality basketball players has better values in all parameters. The order of influence of variables on classification into different quality groups is: relative muscle mass (6.9\%), relative lean mass (6.8\%), total body water (6.7\%), arm span (6.0\%), body height (5.8\%), reaching height (4.7\%) and body mass (2.9\%).
The obtained results can be useful to all trainers for better programming of training content in terms of selection of training content, dosage of load and methodological procedures.

REFERENCES

1. Bayios, I.A., Bergeles, N.K., Apostolidis, N.G., Noutsos, K.S., \& Koskolou, M.B. (2006). Anthropometric, body composition and somatotype differences of Greek elite female basketball, volleyball and handball players. Jurnal of Sports Medicine and Physical Fitness, 46(2), 271-280.
2. Ben Abdelkrim, N.B.; Chaouachi, A.; Chamari, K.; Chtara, M.; Castagna, C. Positional role and competitive-level differences in elite-level men's basketball players. J. Strength Cond. Res. 2010, 24, 1346-1355. [CrossRef] [PubMed]
3. Berdejo-del-Fresno, D., \& Gonzalez-Rave, J. M. (2013). The comparative use of the Beep or Yo-Yo test in high-level British female basketball players. International SportMed Journal, 14(3), 119-126.
4. Berri, D.J.; Brook, S.L.; Fenn, A.J. From college to the pros: Predicting the NBA amateur player draft. J. Prod. Anal. 2010, 35, 25-35. [CrossRef]
5. Carvalho, H. M., Coelho E Silva, M. J., Figueiredo, A. J., Gonçalves, C. E., Philippaerts,
6. R. M., \& Malina, R. M. (2011). Predictors of maximal short-term power outputs in basketball players 1416 years. European Journal of Applied Physiology, 111(5), 789-796. https://doi.org/10.1007/s00421-010-1703-4
7. Cormery B, Marcil M, Bouvard M. (2008). Rule change incidence on physiological characteristics of elite basketball players: a 10-year-period investigation. Br J Sports Med. 42(1):25-30
8. Cui, Y., Liu, F., Bao, D., Liu, H., Zhang, S., Gómez, MÁ. (2019). Key Anthropometric and Physical Determinants for Different Playing Positions During National Basketball Association Draft Combine Test. Front Psychol. 22;10:2359.
9. Delextrat, A., \& Cohen, D. (2009). Strength, power, speed, and agility of women basketball players according to playing position. Journal of Strength and Conditioning Research, 23 (7), 1974-1981.
10. Dežman, B.; Trnini'c, S.; Dizdar, D. Expertmodel of decision-making systemfor efficient orientation of basketball players to positions and roles in the game-Empirical verification. Coll. Antropol. 2001, 25, 141-152. [PubMed]
11. Glatthorn, J.F., Gouge, S., Nussbaumer, S., Stauffacher, S., Impellizzeri, F.M., \& Maffiuletti, N.A. (2011). Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. Journal of Strength and Conditioning Research, 25(2), 556-560.
12. Grgantov, Z. (2002). Anthropometric characteristics of elite Croatian male volleyball players. U: Milanović, D. Prot, F. (ur.), Zbornih radova međunarodne znanstvene konferencije "Kinesiology new perspectives", Zagreb, 283-286. Zagreb: Sveučilište u Zagrebu, Kineziološki fakultet.
13. Grgantov, Z. (2005). Identifikacija morfoloških i motoričkih sklopova odbojkašica u odnosu prema uzrastu i situacijskoj učinkovitosti. Doktorska disertacija. Zagreb: Sveučilište u Zagrebu, Kineziološki fakultet.
14. Grgantov, Z., Katić, R., \& Janković, V. (2006). Morphological characteristics, technical and situation efficacy of young female volleyball players. Collegium Antropologicum, 30(1), 87-96.
15. Hadžić, R., Bjelica, D., \& Popović, S. (2012) Comparative study of anthropometric measurement and body composition between elite basketball and volleyball players. Research in Physical Education, Sport and Health, 1(1), 103-108.
16. Salaj, S., \& Marković, G. (2011). Specificity of jumping, sprinting, and quick change-of direction motor abilities. Journal of Strength and Conditioning Research, 25(5), 1249-1255.
17. Sampaio, J., Ibáñez, G. S., \& Feu, S. (2004). Discriminative Power of Basketball Game- Related Statistics by Level of Competition and Sex. Perceptual \& Motor Skills, 99(3), 1231-1238. https://doi.org/10.2466/pms.99.3f.1231-1238
18. Sampaio, J., Janeira, M., Ibáñez, S. Lorenzo, A. (2006). Discriminant analysis of game-related statistics between basketball guards, forwards and centres in three professional leagues. Eur. J. Sport Sci., 6, 173-178. [CrossRef]

CORRESPODENCE TO:
ALEM KUKIĆ
E-MAIL: alem.kukic76@gmail.com

